
protocoin Documentation
Release 0.1

Christian S. Perone

November 22, 2013





Contents

i



ii



protocoin Documentation, Release 0.1

Welcome to the Protocoin documentation. Protocoin is pure Python implementation of the Bitcoin protocol parsing
and networking. Protocoin doesn’t implement the protocol rules, only the serialization/deserialization procedures and
also basic clients to interact with the Bitcoin P2P network.

Note: Protocoin is intended to be used to build clients that will collect statistics of the network, but you can also use
it to implement a full Bitcoin client.

Contents 1



protocoin Documentation, Release 0.1

2 Contents



CHAPTER 1

Useful links

Some useful links:

• Github Project

• Bitcoin Protocol Specification

3

https://github.com/perone/protocoin
https://en.bitcoin.it/wiki/Protocol_specification


protocoin Documentation, Release 0.1

4 Chapter 1. Useful links



CHAPTER 2

Contents

2.1 Why another Python client ?

There are many other projects implementing the Bitcoin protocol, but none of them has a good documentation and the
majority of the projects are very confusing to understand and to reuse/extend in third-party applications.

The aim of Protocoin is to implement a pythonic and well documented framework that can be used/extended with little
or no effort.

2.2 Changelog

In this section you’ll find information about what’s new in the newer releases of the project.

2.2.1 Release v.0.1

This is the first release of the project. Some messages of the protocol are still missing and will be implemented in the
next versions, the list of features implemented in this release are:

• Documentation

• Field Types

– Base classes

– Int32LEField

– UInt32LEField

– Int64LEField

– UInt64LEField

– Int16LEField

– UInt16LEField

– UInt16BEField

– FixedStringField

5



protocoin Documentation, Release 0.1

– NestedField

– ListField

– IPv4AddressField

– VariableIntegerField

– VariableStringField

– Hash

• Serializers

– Base classes, metaclasses

– MessageHeaderSerializer

– IPv4AddressSerializer

– IPv4AddressTimestampSerializer

– VersionSerializer

– VerAckSerializer

– PingSerializer

– PongSerializer

– InventorySerializer

– InventoryVectorSerializer

– AddressVectorSerializer

– GetDataSerializer

– NotFoundSerializer

– OutPointSerializer

– TxInSerializer

– TxOutSerializer

– TxSerializer

– BlockHeaderSerializer

– BlockSerializer

– HeaderVectorSerializer

– MemPoolSerializer

• Clients

– BitcoinBasicClient

– BitcoinClient

2.3 Getting Started

In this section you’ll find a tutorial to learn more about Protocoin.

6 Chapter 2. Contents



protocoin Documentation, Release 0.1

2.3.1 Installation

To install Protocoin, use pip (recommended method) or easy_install:

pip install protocoin

2.3.2 Architecture

Protocoin uses a simple architecture of classes representing the data to be serialized and also classes representing the
types of the fields to be serialized.

Protocoin is organized in three submodules:

• protocoin.fields

• protocoin.serializers

• protocoin.clients

Each module structure is described in the next sections.

Protocoin Fields

The protocoin.fields module contains all field types suported by the serializers. All field classes in-
herit from the base protocoin.fields.Field class, so if you want to create a new field type, you
should inherit from this class too. There are some composite field types to help in common uses like the
protocoin.fields.VariableStringField for instance, representing a string with variable length.

There are a lot of different fields you can use to extend the protocol, ex-
amples are: protocoin.fields.Int32LEField (a 32-bit integer little-
endian), protocoin.fields.UInt32LEField (a 32-bit unsigned int little-
endian), protocoin.fields.Int64LEField (a 64-bit integer little-endian),
protocoin.fields.UInt64LEField (a 64-bit unsigned integer little-endiang), etc. For more informa-
tion about the fields avaiable please see the module documentation.

Example of code for the unsigned 32-bit integer field:

class UInt32LEField(Field):
datatype = "<I"

def parse(self, value):
self.value = value

def deserialize(self, stream):
data_size = struct.calcsize(self.datatype)
data = stream.read(data_size)
return struct.unpack(self.datatype, data)[0]

def serialize(self):
data = struct.pack(self.datatype, self.value)
return data

Protocoin Serializers

Serializers are classes that describe the field types (in the correct order) that will be used to serializer or deserialize the
message or a part of a message, for instance, see this example of a protocoin.serializers.IPv4Address
object class and then its serializer class implementation:

2.3. Getting Started 7



protocoin Documentation, Release 0.1

class IPv4Address(object):
def __init__(self):

self.services = fields.SERVICES["NODE_NETWORK"]
self.ip_address = "0.0.0.0"
self.port = 8333

class IPv4AddressSerializer(Serializer):
model_class = IPv4Address
services = fields.UInt64LEField()
ip_address = fields.IPv4AddressField()
port = fields.UInt16BEField()

To serialize a message, you simple do:

address = IPv4Address()
serializer = IPv4AddressSerializer()
binary_data = serializer.serialize(address)

and to deserialize:

address = serializer.deserialize(binary_data)

Warning: It is important to subclass the protocoin.serializers.Serializer class in order for the
serializer to work, Serializers uses Python metaclasses magic to deserialize the fields using the correct types and
also the correct order.

Note that we have a special attribute on the serializer that is defining the model_class for the serializer, this class is
used to instantiate the correct object class in the deserialization of the data.

There are some useful fields you can use to nest another serializer or a list of serializers inside a serializer, see in this
example of the implementation of the Version (protocoin.serializers.Version) command:

class VersionSerializer(Serializer):
model_class = Version
version = fields.Int32LEField()
services = fields.UInt64LEField()
timestamp = fields.Int64LEField()
addr_recv = fields.NestedField(IPv4AddressSerializer)
addr_from = fields.NestedField(IPv4AddressSerializer)
nonce = fields.UInt64LEField()
user_agent = fields.VariableStringField()

Note that the fields addr_recv and addr_from are using the special field called
protocoin.fields.NestedField.

Note: There are other special fields like the protocoin.fields.ListField, that will create a vector of objects
using the correct Bitcoin format to serialize vectors of data.

Network Clients

Protocoin also have useful classes to implement a network client for the Bitcoin P2P network.

8 Chapter 2. Contents



protocoin Documentation, Release 0.1

A basic network client

The most basic class available to implement a client is the protocoin.clients.BitcoinBasicClient,
which is a simple client of the Bitcoin network that accepts a socket in the constructor and then will handle and
route the messages received to the correct methods of the class, see this example of a basic client:

import socket
from protocoin.clients import BitcoinBasicClient

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("bitcoin.sipa.be", 8333))
client = BitcoinBasicClient(sock)
client.loop()

Note that this client is very basic, in the example above, the client will connect into the node bitcoin.sipa.be (a seed
node) in the port 8333 and then will wait for messages. The protocoin.clients.BitcoinBasicClient
class doesn’t implement the handshake of the protocol and also doesn’t answer the pings of the nodes, so you may be
disconnected from the node and it is your reponsability to implement the handshake and the Pong response message
to the Ping message. To implement answer according to the received messages from the network node, you can
implement methods with the name handle_[name of the command], to implement the handling method to show a
message every time that a Version message arrives, you can do like in the example below:

class MyBitcoinClient(BitcoinBasicClient):
def handle_version(self, message_header, message):

print "A version was received !"

If you want to answer the version command message with a VerAck message, you just need to create the message, the
serializer and then call the protocoin.clients.BitcoinBasicClient.send_message() method of the
Bitcoin class, like in the example below:

class MyBitcoinClient(BitcoinBasicClient):
def handle_version(self, message_header, message):

verack = VerAck()
verack_serial = VerAckSerializer()
self.send_message(verack, verack_serial)

Since these problems are very common, there are another class which implements a node that will stay up in the
Bitcoin network. To use this class, just subclass the protocoin.clients.BitcoinClient class, for more
information read the next section.

A more complete client implementation

The protocoin.clients.BitcoinClient class implements the minimum required protocol rules to a client
stay online on the Bitcoin network. This class will answer to Ping message commands with Pong messages and also
have a handshake method that will send the Version command and answer the Version with the VerAck command
message too. See an example of the use:

import socket
from protocoin.clients import BitcoinClient

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("bitcoin.sipa.be", 8333))
client = BitcoinClient(sock)
client.handshake()
client.loop()

In the example above, the handshake is done before entering the message loop.

2.3. Getting Started 9



protocoin Documentation, Release 0.1

2.4 Examples

In this section you can see various examples using Protocoin API.

2.4.1 Receiving blocks in real-time

In this example we will print the block information as well the block hash when blocks arrive in real-time from the
nodes. It will also print the name of each message received:

import socket
from protocoin.clients import *

class MyBitcoinClient(BitcoinClient):
def handle_block(self, message_header, message):

print message
print "Block hash:", message.calculate_hash()

def handle_inv(self, message_header, message):
getdata = GetData()
getdata_serial = GetDataSerializer()
getdata.inventory = message.inventory
self.send_message(getdata, getdata_serial)

def handle_message_header(self, message_header, payload):
print "Received message:", message_header.command

def handle_send_message(self, message_header, message):
print "Message sent:", message_header.command

def run_main():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("bitcoin.sipa.be", 8333))
client = MyBitcoinClient(sock)
client.handshake()
client.loop()

The example above will output:

<Block Version=[2] Timestamp=[Fri Nov 22 13:58:59 2013] Nonce=[1719395575] Hash=[0000000000000004b798ea6eb896bb3d39f1f1b19d285a0d48167e8661387e58] Tx Count=[232]>
Block hash: 0000000000000004b798ea6eb896bb3d39f1f1b19d285a0d48167e8661387e58

Note that in the example above, the handle_inv was implemented in order to retrieve the inventory data using the
GetData message command. Without the GetData command, we only receive the Inv message command.

2.4.2 Inspecting transactions output

In the example below we’re showing the output value in BTCs for each transaction output:

import socket
from protocoin.clients import *

class MyBitcoinClient(BitcoinClient):
def handle_tx(self, message_header, message):

print message
for tx_out in message.tx_out:

print "BTC: %.8f" % tx_out.get_btc_value()

10 Chapter 2. Contents



protocoin Documentation, Release 0.1

def handle_inv(self, message_header, message):
getdata = GetData()
getdata_serial = GetDataSerializer()
getdata.inventory = message.inventory
self.send_message(getdata, getdata_serial)

def run_main():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(("bitcoin.sipa.be", 8333))
print "Connected !"
client = MyBitcoinClient(sock)
client.handshake()
client.loop()

if __name__ == "__main__":
run_main()

The example above will show the following output for every transaction, in this example it is showing a transaction
with 13 inputs and 2 outputs of 0.25 BTC and 0.00936411 BTC:

<Tx Version=[1] Lock Time=[Always Locked] TxIn Count=[13] TxOut Count=[2]>
BTC: 0.25000000
BTC: 0.00936411

2.5 API Documentation

All modules listed below are under the “protocoin” module.

2.5.1 Fields

class protocoin.fields.Field
Base class for the Fields. This class only implements the counter to keep the order of the fields on the serializer
classes.

deserialize(stream)
This method must read the stream data and then deserialize and return the deserialized content.

Returns the deserialized content

Parameters stream – stream of data to read

parse(value)
This method should be implemented to parse the value parameter into the field internal representation.

Parameters value – value to be parsed

serialize()
Serialize the internal representation and return the serialized data.

Returns the serialized data

class protocoin.fields.FixedStringField(length)
A fixed length string field.

Example of use:

2.5. API Documentation 11



protocoin Documentation, Release 0.1

class MessageHeaderSerializer(Serializer):
model_class = MessageHeader
magic = fields.UInt32LEField()
command = fields.FixedStringField(12)
length = fields.UInt32LEField()
checksum = fields.UInt32LEField()

class protocoin.fields.Hash
A hash type field.

protocoin.fields.INVENTORY_TYPE = {‘MSG_BLOCK’: 2, ‘MSG_TX’: 1, ‘ERROR’: 0}
The type of the inventories

class protocoin.fields.IPv4AddressField
An IPv4 address field without timestamp and reserved IPv6 space.

class protocoin.fields.Int16LEField
16-bit little-endian integer field.

class protocoin.fields.Int32LEField
32-bit little-endian integer field.

class protocoin.fields.Int64LEField
64-bit little-endian integer field.

class protocoin.fields.ListField(serializer_class)
A field used to serialize/deserialize a list of serializers.

Example of use:

class TxSerializer(Serializer):
model_class = Tx
version = fields.UInt32LEField()
tx_in = fields.ListField(TxInSerializer)
tx_out = fields.ListField(TxOutSerializer)
lock_time = fields.UInt32LEField()

protocoin.fields.MAGIC_VALUES = {‘amecoin’: 4273258233, ‘testnet’: 3669344250, ‘main’: 3652501241, ‘testnet3’: 118034699}
The network magic values

class protocoin.fields.NestedField(serializer_class)
A field used to nest another serializer.

Example of use:

class TxInSerializer(Serializer):
model_class = TxIn
previous_output = fields.NestedField(OutPointSerializer)
signature_script = fields.VariableStringField()
sequence = fields.UInt32LEField()

protocoin.fields.PROTOCOL_VERSION = 60002
The protocol version

class protocoin.fields.PrimaryField
This is a base class for all fields that has only one value and their value can be represented by a Python struct
datatype.

Example of use:

class UInt32LEField(PrimaryField):
datatype = "<I"

12 Chapter 2. Contents



protocoin Documentation, Release 0.1

deserialize(stream)
Deserialize the stream using the struct data type specified.

Parameters stream – the data stream

parse(value)
This method will set the internal value to the specified value.

Parameters value – the value to be set

serialize()
Serialize the internal data and then return the serialized data.

protocoin.fields.SERVICES = {‘NODE_NETWORK’: 1}
The available services

class protocoin.fields.UInt16BEField
16-bit big-endian unsigned integer field.

class protocoin.fields.UInt16LEField
16-bit little-endian unsigned integer field.

class protocoin.fields.UInt32LEField
32-bit little-endian unsigned integer field.

class protocoin.fields.UInt64LEField
64-bit little-endian unsigned integer field.

class protocoin.fields.VariableIntegerField
A variable size integer field.

class protocoin.fields.VariableStringField
A variable length string field.

2.5.2 Serializers

class protocoin.serializers.AddressVector
A vector of addresses.

class protocoin.serializers.AddressVectorSerializer
Serializer for the addresses vector.

model_class
alias of AddressVector

class protocoin.serializers.Block
The block message. This message contains all the transactions present in the block.

class protocoin.serializers.BlockHeader
The header of the block.

calculate_hash()
This method will calculate the hash of the block.

class protocoin.serializers.BlockHeaderSerializer
The serializer for the block header.

model_class
alias of BlockHeader

class protocoin.serializers.BlockSerializer
The deserializer for the blocks.

2.5. API Documentation 13



protocoin Documentation, Release 0.1

model_class
alias of Block

class protocoin.serializers.GetData
GetData message command.

class protocoin.serializers.GetDataSerializer
Serializer for the GetData command.

model_class
alias of GetData

class protocoin.serializers.HeaderVector
The header only vector.

class protocoin.serializers.HeaderVectorSerializer
Serializer for the block header vector.

model_class
alias of HeaderVector

class protocoin.serializers.IPv4Address
The IPv4 Address (without timestamp).

class protocoin.serializers.IPv4AddressSerializer
Serializer for the IPv4Address.

model_class
alias of IPv4Address

class protocoin.serializers.IPv4AddressTimestamp
The IPv4 Address with timestamp.

class protocoin.serializers.IPv4AddressTimestampSerializer
Serializer for the IPv4AddressTimestamp.

model_class
alias of IPv4AddressTimestamp

class protocoin.serializers.Inventory
The Inventory representation.

type_to_text()
Converts the inventory type to text representation.

class protocoin.serializers.InventorySerializer
The serializer for the Inventory.

model_class
alias of Inventory

class protocoin.serializers.InventoryVector
A vector of inventories.

class protocoin.serializers.InventoryVectorSerializer
The serializer for the vector of inventories.

model_class
alias of InventoryVector

class protocoin.serializers.MemPool
The mempool command.

14 Chapter 2. Contents



protocoin Documentation, Release 0.1

class protocoin.serializers.MemPoolSerializer
The serializer for the mempool command.

model_class
alias of MemPool

class protocoin.serializers.MessageHeader
The header of all bitcoin messages.

class protocoin.serializers.MessageHeaderSerializer
Serializer for the MessageHeader.

static calc_checksum(payload)
Calculate the checksum of the specified payload.

Parameters payload – The binary data payload.

model_class
alias of MessageHeader

class protocoin.serializers.NotFound
NotFound command message.

class protocoin.serializers.NotFoundSerializer
Serializer for the NotFound message.

model_class
alias of NotFound

class protocoin.serializers.OutPoint
The OutPoint representation.

class protocoin.serializers.OutPointSerializer
The OutPoint representation serializer.

model_class
alias of OutPoint

class protocoin.serializers.Ping
The ping command, which should always be answered with a Pong.

class protocoin.serializers.PingSerializer
The ping command serializer.

model_class
alias of Ping

class protocoin.serializers.Pong
The pong command, usually returned when a ping command arrives.

class protocoin.serializers.PongSerializer
The pong command serializer.

model_class
alias of Pong

class protocoin.serializers.Serializer
The main serializer class, inherit from this class to create custom serializers.

Example of use:

class VerAckSerializer(Serializer):
model_class = VerAck

2.5. API Documentation 15



protocoin Documentation, Release 0.1

deserialize(stream)
This method will read the stream and then will deserialize the binary data information present on it.

Parameters stream – A file-like object (StringIO, file, socket, etc.)

serialize(obj, fields=None)
This method will receive an object and then will serialize it according to the fields declared on the serializer.

Parameters obj – The object to serializer.

class protocoin.serializers.SerializerABC
The serializer abstract base class.

class protocoin.serializers.SerializerMeta
The serializer meta class. This class will create an attribute called ‘_fields’ in each serializer with the ordered
dict of fields present on the subclasses.

classmethod get_fields(meta, bases, attrs, field_class)
This method will construct an ordered dict with all the fields present on the serializer classes.

class protocoin.serializers.Tx
The main transaction representation, this object will contain all the inputs and outputs of the transaction.

class protocoin.serializers.TxIn
The transaction input representation.

class protocoin.serializers.TxInSerializer
The transaction input serializer.

model_class
alias of TxIn

class protocoin.serializers.TxOut
The transaction output.

class protocoin.serializers.TxOutSerializer
The transaction output serializer.

model_class
alias of TxOut

class protocoin.serializers.TxSerializer
The transaction serializer.

model_class
alias of Tx

class protocoin.serializers.VerAck
The version acknowledge (verack) command.

class protocoin.serializers.VerAckSerializer
The serializer for the verack command.

model_class
alias of VerAck

class protocoin.serializers.Version
The version command.

class protocoin.serializers.VersionSerializer
The version command serializer.

model_class
alias of Version

16 Chapter 2. Contents



protocoin Documentation, Release 0.1

2.5.3 Clients

class protocoin.clients.BitcoinBasicClient(socket)
The base class for a Bitcoin network client, this class implements utility functions to create your own class.

close_stream()
This method will close the socket stream.

handle_message_header(message_header, payload)
This method will be called for every message before the message payload deserialization.

Parameters

• message_header – The message header

• payload – The payload of the message

handle_send_message(message_header, message)
This method will be called for every sent message.

Parameters

• message_header – The header of the message

• message – The message to be sent

loop()
This is the main method of the client, it will enter in a receive/send loop.

receive_message()
This method is called inside the loop() method to receive a message from the stream (socket) and then
deserialize it.

send_message(message, serializer)
This method will serialize the message using the specified serializer and then it will send it to the socket
stream.

Parameters

• message – The message object to send

• serializer – The serializar of the message

class protocoin.clients.BitcoinClient(socket)
This class implements all the protocol rules needed for a client to stay up in the network. It will handle the
handshake rules as well answer the ping messages.

handle_ping(message_header, message)
This method will handle the Ping message and then will answer every Ping message with a Pong message
using the nonce received.

Parameters

• message_header – The header of the Ping message

• message – The Ping message

handle_version(message_header, message)
This method will handle the Version message and will send a VerAck message when it receives the Version
message.

Parameters

• message_header – The Version message header

• message – The Version message

2.5. API Documentation 17



protocoin Documentation, Release 0.1

handshake()
This method will implement the handshake of the Bitcoin protocol. It will send the Version message.

2.6 Contribute or Report a bug

Protocoin is an open-source project created and maintained by Christian S. Perone. You can help it by donating or
helping with a pull-request or a bug report. You can get the source-code of the project in the Github project page.

2.7 License

BSD License:

Copyright (c) 2013, Christian S. Perone
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
This product includes software developed by Christian S. Perone.
4. Neither the name of the Christian S. Perone nor the

names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY CODEFISH ’’AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CODEFISH BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

18 Chapter 2. Contents

https://github.com/perone
https://github.com/perone/protocoin


CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19



protocoin Documentation, Release 0.1

20 Chapter 3. Indices and tables



Python Module Index

p
protocoin.clients, ??
protocoin.fields, ??
protocoin.serializers, ??

21


